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For close to a century quantum mechanics has been trying to tell us that 

events are discrete, indivisible and non-local. Yet few attempts have been made 

to start with this basic insight and then reconstruct physics. We outline here an 

example - perhaps even a paradigm - for constructing such a discrete physics. 

We start by postulating finiteness, discreteness, finite computability, ab- 

solute nonuniqueness (i.e., homogeneity in the absence of specific cause) and 

additivity.“l So far as we can see, any measurable world satisfying these postu- 

lates is restricted to three dimensions. Here “dimensions” refer to the cardinal 

number of independent generators of ordered [our postulates allow us to con- 

struct the usual ordinal sequence of natural numbers by recursion] sequences of 

symbols. It is necessary to have two or more distinct symbols [e.g., 0 and l] 

and two suffice. Tagging these sequences by a, b, c, . . . and representing them by 

bit strings Sa = (..., b:, . . . . )n, bi E 0,1, i E 1,2, . . . . n we can synchronize these 

strings by using the universal ordering parameter n; for example, we can look 

along all the strings a, b, c, . . . . until we find some n such that for a finite sequence 

of length s bi+i = bL+i = bi+i = . . . . i E 1,2, . . . . s. Such a synchronization will 

always occur with finite probability. However, as Feller has pointed out,[21 re- 

peated possibilities for homogeneous synchronization is limited by the number of 

independent sequence generators (which we have shown can be identified as the 

number of dimensions) available. The case he examines is the probability that 

the accumulated number of l’s (ka = Cr=,bq) is the same for all sequences after 

n symbols have been generated. Clearly, if r is the number of dimensions, this 

probability is 

U n = g&y + (;y + . . . + (“)‘I - $$]t(r-‘) 
n 

It follows that if we use these ordered recurrences as a finite metric, for any finite 
I 

number of them we can construct a “space” of two or three dimensions which 

is both homogeneous and isotropic, but that for four or more dimensions, the 

probability of synchronization across all dimensions becomes vanishingly small 
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for large recurrences. As one of us (DMcG) has pointed out, the theorem is more 

general than this specific instance. For instance, we can talk of recurrences of a 

sequence of any finite length of any finite number of symbols synchronized across 

dimensions, and the theorem still holds. 

We now define a distance function in this space. We first define an ensemble 

which, under our postulates, must have finite cardinality but differs from a finite 

set in that it need not necessarily be completely ordered, - or orderable. In this 

respect our ensemble is what Parker-Rhodes would call a sort.13’ Such ensem- 

bles will have attributes resulting from how they are generated and/or examined, 

eg. permutations with respect to a reference ensemble and an ordering opera- 

tor which generates permutations or a specific sub-ensemble with respect to the 

sub-ensemble and the identity ordering operator. Call the specific generation of 

an attribute a state. Then we define attribute distance as the measure dependent 

solely on the number of states between two ensembles distinguishable by a spe- 

cific attribute, normalized by the total number of states possible. This is similar 

to the statistical (in the frequency theory of probability sense) distance defined 

by Wootters”’ as the “maximum number [N] of distinguishable orientations be- 

tween” two measured attribute values divided by the square root of N. Clearly 

zero distance implies indistinguishability from an information-theoretic point 

of view. 

Given any discrete space constructed consistent with our postulates, we re- 

quire that there exist a total ordering operator T (such as that produced by the 

Program Universe ordering operator TICK) .16j The universal ordering operator 

T on which the generations of this ordering operator are based provides a local 

total ordering for the evolution of each ensemble. 

We now define the increment size I of an ensemble as the number of genera- 

tions of some ordering operator t needed to describe (establish local isomorphism 

with) the increases in attribute distance between an ensemble and some reference 

ensemble. Similarly we define,the decrement size D of an ensemble as the number 
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of generations of the ordering operator t needed to describe the decreases in 

attribute distance between an ensemble and the same reference ensemble. The 

total size I + D of an ensemble is defined as the arithmetic sum of I and D. 

Attribute velocity v is defined as the mathematical rate of change in attribute 

distance of an ensemble with respect to the ordering operator t; hence 21 = (I - 

D)/(I+D). Cl early for any specific attribute and ordering operator 11 is bounded, 

defining a limiting uelocity. It is now straightforwardlll, although a bit tedious 

when due attention is paid to rigor, to show that these definitions allow us to 

derive the usual “relativistic” composition law for velocities and the “relativistic 

doppler shift” for the rational fractions provided as velocities by this discrete 

definition of velocity. The usual Lorentz transformations in 3+1 space follow, 

adding minimal postulates about “analyticity” ; fortunately our discrete physics 

can be developed in “momentum space ” B’ requiring only the rational fractions for 

comparison with experiment. Indeed, if one sticks to the discrete statistical space 

and asks for the connection between the “coordinate systems” referred to different 

reference ensembles in terms of the standard deviation of the velocities, one is 

able to provide a rigorous derivation of the “Lorentz transformation” between 

biased random walks pioneered by Stein.17’ Further, consistent examination of 

the effect of the finite ordering of generation in this discrete space allows one 

to derive commutation relations which vanish between commensurate attributes 

and generate the conventional commutation relations between “d-momentum”, 

“d-position” and the components of “d-angular momentum” which lie at the heart 

of quantum mechanics. This derivation includes, of course, the introduction of 

complex numbers. 

Y. 

To take this mathematical structure over into a basis for discrete physics, 

we must relate these numerical results to measurement of mass, length and time 

(or three dimensionally independent combinations of them) referred to labora- 

tory standards. We have seen that the construction provides us with a “limiting 

velocity” for any attribute, but no guarantee that these will be the same for 

different attributes. Since we know from experiment that any measurement can 
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be affected, directly or indirectly, by electromagnetism, we conclude that this 

phenomenon must refer to all physical attributes, and hence that (since it re- 

quires the most information to establish), the smallest of the attribute limiting 

velocities is to be identified with the limiting velocity c of physics. Since that 

implies the existence of “supraluminal” velocities which cannot be used for signal- 

ing (information transfer) but which can provide synchronization or supraluminal 

correlation we claim to have provided a simple way to have a rational understand- 

ing of Aspect’s and other EPR-Bohm type distant correlation experiments. In 

the work we summarize belowl’l, Planck’s constant was introduced by identify- 

ing the step length in Stein’s random walk with the deBroglie phase wavelength 

he/E. Now that we can get it directly from the angular momentum commutation 

relations, we must prove consistency with the other approach, - a task in which 

we are now engagedill. But the unit of mass is left undefined by the topolog- 

ical considerations we have presented so far, and the specific metric generator 

has been left unspecified. To establish the unit of mass we use the combinatorial 

hierarchy18’ and generate both it and the states by means of Program Universe[5]. 

For a more detailed discussion of earlier work we refer the reader to the 

extended version”’ of our report to the 7 th Congress in this series, and for 

subsequent progress to Ref.6. The discrete modeling of “events” pioneered by 

Amson, Bastin, Kilmister and Parker-Rhode@] was based on the discrimination 

operation Sa $ Sb = (..., bt +z bf, ...)n = (..., (bq - bib)%, ...)n, the observation 

that j linearly independent strings support 2i - 1 subsets which close under 

discrimination (e.g., {a}, {b}, {c}, {a,b,a + b}, {b,c,b + c}, {c,a,c + a}, 

{a, b, c, a + b, b + c, c + a, a + b + c} where we have used “+” for discrimination 

and a+a =O, etc., ) and the mapping of such sets (starting with 2 basis strings) 

to generate the unique 4level combinatorial hierarchy with cumulative cardinals 

3,10,137, 2127 + 136 N 1.7 x 103* terminating at the fourth level. The connection 

between 137 and tic/e2 and between 1.7~ 1O38 and iic/Gmz = (mPlanck/mproton)2 

is numerically obvious; in order to justify the identification, these numbers must 
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occur in a dynamics where they represent inverse probabilities for scattering 

calculated as one case out of the appropriate number of states that have equal 

prior probabilities. We now claim to have provided this dynamic&l. 

The approach presented at the 7th Congress was to construct a growing uni- 

verse of bit strings by a computer algorithm called Program Universe in such 

a way that the first NL bits in any string close in some representation of the 

combinatorial hierarchy and thereafter provide tags (in the sense defined above) 

or as we call them in this context labels for growing ensembles of address strings. 

The algorithm takes two strings, discriminates them and adjoins the result to the 

universe if it is not already there; if it is, the program TICKS, i.e., it concate- 

nates an arbitrary bit arbitrarily chosen for each string at the growing end. We 

have proved that this does indeed automatically generate some representation of 

the combinatorial hierarchy in the labels. Once the labels close, they have an 

invariant significance so long as the program runs. Hence we can assume that 

each is associated with a parameter that we will call mass, which it then becomes 

the task of the theory to compute in its ratio to the proton (or Planck) mass. 

Now that we have tagged ensembles of the type discussed in the first part of 

this abstract, we see that for each address there is an attribute velocity which, 

referred to the most probable address string (which has a equal number of zeros 

and ones), is bounded by fl. The discussion in this abstract now justifies our 

previous identification of the parameter pa = T - 1 with velocity of a mass 

state measured relative to the limiting velocity in a frame at rest with respect 

to the cosmic background radiation. Further, thanks to the Feller theorem, we 

see that any three strings which have the same velocity can scatter conserving 

3-momentum. We therefore extend our previous definition of “event” to include 

all such scatterings which occur at each TICK. One major advance since the 

7th Congress is the derivation of the “propagator” in this scattering theory by 

a simple probability calculation in the bit string universe. This allows us to 

put these events together as scattering amplitudes with a pole at the mass of 

the intermediate particle and use them as the driving terms for a finite particle 
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number relativistic scattering theory. Connection with laboratory space and 

time is then provided, as before, by our basic epistemological postulate called 

the counter paradigm: 

Any elementary event, under circumstances which it is the task of the 

experimental physicist to investigate, can lead to the firing of a counter. 

Then the connection between the steps in the random walks and the deBroglie 

phase and group wavelengths go through as before, and our contact with exper- 

iment is as firm as that of any S-matrix theory. 

Another advance made recently is a firm identification of the labels which 

occur in the first three levels of the combinatorial hierarchy with the quantum 

numbers of the standard model for quarks and leptons. Level one gives us a 

two-component chiral neutrino, level two electrons, positrons transverse gamma 

rays and the coulomb interaction, while level three can be identified with two 

flavors of quarks and the associated gluons in a color octet; the color singlet 

states correspond to neutron, proton, their antiparticles, and the appropriate 

charge and angular momentum states of the r,p, and w. Weak-electromagnetic 

unification, and the higher generations will have to come in at level four, if we 

are on the right track. The structures are there, all right, and the coupling to the 

first generation will be weak because of the combinatorial explosion which occurs 

at level four (2127 - 1 quantum states). We are now faced with the formidable 

computational task of computing QED, low energy hadron physics, QCD and 

getting everything right, or close enough so that we can estimate where the 

approximations are not good enough. 
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